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AFIT/GAP/ENP/09-M09 

Abstract 

 

A small fraction of solar flares are accompanied by high energy (>10 MeV) 

protons.  These events can cause degradation or failure of satellite systems and can be 

harmful to humans in space or in high altitude flight.  For risk management purposes, the 

Air Force is interested in predicting these events.  Several algorithms exist to do this 

operationally, but none predict when these events will occur with much accuracy.  Here, 

we analyzed 3514 M1 and greater flares including 106 with proton events from the 

GOES sensors from 1 Jan 1986 to 31 Dec 2004 to produce new results, including a full 

scale comparison and optimization for all the algorithms.  In every case, optimization 

leads to increased prediction ability.  This research also produced a new algorithm based 

on the Garcia algorithm, which functions better than any other operational algorithm.  

This model, Garcia 2008, predicts with a skill score of .526, an improvement from .342.  

This new model is the best at prediction of all models measured.   
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PREDICTING SOLAR PROTONS: A STATISTICAL APPROACH 

 

I. Introduction to Solar Energetic Protons 

Solar Flares and Solar Energetic Protons 

 The Earth is periodically bombarded with energetic protons from space, some 

with energy above 10 MeV, well above the background flux of protons (Kahler and 

Vourlidas, 2005).  These are known as solar energetic protons (SEP).  Some of these 

groups of protons arrive shortly after flares, and some after coronal mass ejections (CME) 

(Balch, 2008b; Kahler, 1996).  When a solar flare occurs, it has a chance to be 

accompanied by protons accelerated away from the site of the flare.  Not all flares are 

accompanied by SEP events that are observed at Earth; however, those that do are of 

great interest.  It is extremely important to be able to predict when SEP will impact Earth.  

These particles can cause degradation to semiconductor systems and are harmful to 

humans (Getly et al., 2005).  Satellites can be shutdown or reoriented to minimize 

exposure.  Aircraft can be grounded for the duration of the event.  Particle fluxes (number 

per unit area per time) and fluences (total number of protons per area received) are of 

great interest to both military and civilian agencies for reasons such as high flying aircraft 

(Beck et. al., 2005), manned missions to the moon or to Mars (Smart and Shea, 2003), the 

International Space Station, or even tourism in space (Collins, 2005).  Since neither flares 

nor CMEs can be predicted, predicting which flares, once they happen, are likely to be 
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accompanied by SEP will allow scheduling to take advantage of times when the predicted 

flux of SEP is low. 

Definition of SEP Events Associated with Flares 

SEP events are defined as when significant numbers of energetic protons are 

measurable at Earth.  The background for proton flux is .15 particle flux units (pfu) 

measured with the Geostationary Operational Environmental Satellite (GOES) sensors in 

orbit (Kahler and Vourlidas, 2005).  One pfu is one particle per square centimeter per 

steradian per second.  The largest SEP events have fluxes of protons that exceed 40,000 

pfu (Balch, 2008a).  The National Oceanographic and Atmospheric Administration 

(NOAA) classifies an event as a SEP event if proton flux exceeds 10 pfu of 10 MeV 

protons for 15 minutes at the altitude of geostationary orbit.  ―This is one to two orders of 

magnitude above background levels, and represents the lowest level where radiation 

hazard analysis is needed for manned spacecraft missions,‖ (Balch, 1999).  This is the 

international standard (Xiaocong, 2001; Garcia, 1994a) as well as a level the Air Force 

tracks (Kahler, 1996; Cliver and Ling, 2006).   

Production of SEP 

 The exact relation between solar flares and solar energetic proton events (SEP) is 

not fully understood (Garcia, 2004a; Garcia, 2004b; Balch, 1999; Balch, 2008b).  This is 

complicated by the fact that flares are only half of the equation.  Coronal Mass Ejections, 

or CMEs, also play a strong role in determining SEP production.  Studies (Kahler and 

Vourlidas, 2005; Kahler, 1996; Kahler et al., 1984) have found that there was ―a high but 

not perfect association of prompt proton events with CMEs,‖ (Kahler and Vourlidas, 
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2005).   One conclusion from this research was that ―a CME may be a necessary 

requirement for the occurrence of a flare proton event‖ and ― the CME acts as a driver to 

set up a coronal shock in which protons are accelerated,‖ (Kahler et al., 1984).  In this 

research, CME effects will be addressed by the presence or absence of Type II and Type 

IV radio data, the radio signatures of a CME in the solar atmosphere.  This is for 

consistency, as the more informative CME speed data is not always available before 

1996, when the CME observational satellite SOHO LASCO starting producing data 

(Yashiro, 2008).  With all this data, the goal of this research is to find that flares which 

are accompanied by SEP have certain characteristics, such as intensity, temperature, and 

presence of a CME, that separate them from other flares. 

Damage Due to Solar Protons 

 It is vital to both manned and unmanned mission for SEP events to be predicted 

properly.  Aside from the obvious radiation damage to both astronauts and high altitude 

pilots, spacecraft can receive damage. 

SEP events are responsible for rendering many satellites inoperable.  On 28 Oct 

2003, the Japanese government lost contact with an experimental communications 

satellite, the Data Relay Test Satellite. The satellite went into ‗safe‘ mode, shutting down 

all but essential functions.  ―The excessive signal noise coming from the Earth sensor 

assembly suggests the satellite was affected by a proton barrage,‖ says Katagi, associate 

executive director of the Japanese Aerospace Exploration Agency, and ―The most likely 

culprit is the solar flare,‖ (Kallender, 2003). 

The U.S. spacecraft Stardust, designed to collect comet dust, survived a hit from a 

SEP event 9 Nov 2000.  The satellite, overloaded by the protons, shut down operations.  
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The spacecraft protected itself as designed, turning in place so that its solar panels were 

pointed at the sun and the cameras away from it.  However, even with these protective 

measures, temporary loss of functionality occurred.  Later inspection showed the cameras 

were receiving data from stray protons even in the areas normally shaded. Its main star 

cameras, used to locate itself in space, had both failed.  Scientists left the craft in standby 

mode until the protons had passed, then ordered it to reboot.  Images taken after the 

proton event showed the camera was ―completely recovered from the proton hits,‖ (Heil 

and Roseth, 2000).   

Predicting SEP Events  

No current prediction method works perfectly, and the current models take into 

account only a few of the many measurements recorded for each flare; such as the 

temperature, soft x-ray flux, or radio data.  There is much more information available, so 

advanced statistical techniques may perform better by taking into account all the 

additional pieces of information.  

First, I will cover the physics of flares and current practice in prediction, such as 

the model used by NOAA and the Air Force‘s own AF-Geospace.  Then, I will discuss 

how a new model is created and its predictive ability is compared to other models.  

Following that, I will examine how well the new model performs versus the previous 

models, in both their original forms and in optimized form.  Finally, I will discuss the 

conclusions of this analysis, the recommendations it makes for predictions, and 

recommendations for further study. 
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II. Background 

Solar Flares 

 The sun has a strong magnetic field at the surface on the order of a few thousand 

Gauss, driven by unknown processes deep in the radiative zone (Aschwanden, 2004).  

The sun‘s field reverses itself over a very predictable period of about 11 years due to 

magnetic field lines twisting in the differential rotation (Foukal, 2004).  Current theories 

state that the differences in rotation between the poles of the sun, the equator, and the 

subsurface zones cause complex patterns in the magnetic field at the surface of the sun as 

field lines twist about each other, yielding areas of high magnetic energy density, energy 

that is stored in the field (Foukal, 2004).  Field lines of opposite polarity pointing into and 

out of the sun‘s surface are forced near to each other by differential rotation.  The lines, 

originally anti-parallel to each other, break and reconnect in an X pattern instead.  The 

new lines form an arch on the sun‘s surface and a curve with ends in interplanetary space 

that bends towards the sun, nearly meeting the top of the new arch. This reconnection 

releases enormous energy and is known as a solar flare (Foukal, 2004).  Flares can 

generally only be detected by observations in the chromospheric and coronal radiations 

(soft and hard x-rays, radio and extreme ultra-violet), which brighten considerably more 

than the visible light photosphere.  Exceptions to this rule are the white-light flares, 

where even the photosphere brightens enough to be measured in visible light on the 

ground.  The most famous example of this was the first sighting of a flare by Carrington 

and Hodgson in 1859 (Foukal, 2004). 
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Flares and Protons 

 The release of energy from magnetic fields at coronal levels (high above the 

surface) dissipates mostly as heat, increasing the velocity of protons and electrons found 

in the corona. Particles are accelerated away from the reconnection site.  Those electrons 

which are accelerated down the field lines toward the sun slow as they hit the denser 

regions of the chromosphere, emitting bremsstrahlung, or braking radiation, as they do.  

It is this bremsstrahlung which produces the hard x-rays measured by satellites.  The 

dissipation of electron velocity as heat warms the chromosphere, increasing the radiation 

produced there, generating the soft x-rays observed (Foukal, 2004).  If protons are present 

at the reconnection site, they can be accelerated along the field lines and travel out into 

space, and can be observed at Earth if conditions in the interstellar medium are right. 

 The current model of flare development, shown in Figure 1, shows a flare 

progressing from opposing field lines tightly packed next to each other (a), then 

reconnection at the X point, front (b) and side views (b‘), showing the new field lines and 

the rising prominence that is a feature of the solar surface, and finally the late phase (c) 

where the new field configuration becomes stable (Aschwanden, 2004).  In the final 

picture there are holes in the solar surface, where the chromosphere has been ‗boiled‘ 

away by energetic particles, heating the surface until it produces the x-rays that 

characterize the flare. 
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Figure 1. The Standard Model of Solar Flare Production (Used with Permission from Aschwanden, 

2004) 
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Flare Temperature 

 Solar flares produce extreme temperatures in the range of 10-40 MegaKelvin 

(MK).  Though the notion of temperature is rather vague when applied to any sparse gas, 

the flare has distinct features which make this determination useful.  A normal gas at 

some defined temperature will have emission lines with a defined strength.  As 

temperature changes, the emission lines from that gas will change in intensity relative to 

each other.  As the temperature rises, lines which were not present before will show up as 

the average kinetic energy of the particles ionizing or exciting them rises.  For example, 

the Fe VI lines (iron, ionized five times) will first show up at higher temperature than the 

Fe V (iron, ionized four times) lines.  As the kinetic energy keeps rising, previously 

strong lines will weaken as fewer atoms are ionized to only that state.  There will be 

fewer Fe V lines if most of the iron is ionized at least five times.  By taking a ratio of line 

strengths, algorithms can generate an effective temperature for a gas and thus for a flare 

as well (Garcia, 1994b).   

The Mewe Temperature 

This temperature calculation can be simplified by looking merely at broadband x-

ray flux, and taking the ratio of two bands to each other.  When used on GOES data, this 

method results in the Mewe temperature for a flare, used in the new predictive algorithm.   

The process to calculate the Mewe Temperature of a flare from the GOES data is 

straightforward.  Take the ratio of the long x-ray flux (1 - 8 angstrom) to the short x-ray 

flux (.5 - 4 angstrom).  This ratio R is entered into the equation 

T (R) = A (0) + A (1) R + A (2) R
2
 + A (3) R

3                                     
(1) 
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The coefficients A (0) through A (3) are available in the literature but are different 

for each GOES (White et al., 2005).  Each is also different for coronal and chromospheric 

emissions, given the different elemental abundances there, but since flares emitting 

primarily in the corona, the coronal abundances will be used to calculate temperature.  

The coefficients are reproduced in Table 1: 

 

 
Table 1. Coefficients for Mewe Temperature Calculation 

Satellite A (0) A (1)  A (2) A (3) 

GOES 6 3.83 86.2 -193.3 242.1 

GOES 7 3.68 101.2 -271.3 409.3 

GOES 8 4.02 100.3 -257.1 366.5 

GOES 10 3.81 101.5 -270.7 404.6 

GOES 12 3.90 101.2 -266.4 390.2 

 

 

Thus, a flare measured by GOES 6 with long x-ray flux of 1.83*10
-4

 W/m
2
 and 

short x-ray flux of 5.79*10
-5

 W/m
2
 would have a ratio of .316 and thus a Mewe 

Temperature of 19.4 MK. 

Integrated Flux 

Another predictor used by forecasting algorithms is the integrated flux.  This is a 

measure of how strong the flare is over time.  As the GOES data is not instantaneous but 

available in one minute intervals, the integrated flux is the sum of the one minute 

intervals from flare beginning to flare end, corrected by a factor of 60 to change from 

minutes to seconds.  Flares are classified as ending after their flux has fallen to half the 

peak value (Balch, 1999).  
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The Importance of Location 

The sun‘s strong magnetic field penetrates out into interplanetary space well past 

the Earth.  These magnetic field lines influence the travel of all particles, in particular 

SEP.  As the protons leave the sun, they travel radially outward, but are accelerated 

around the field lines in corkscrew fashion.  The field lines themselves are not straight, 

but rather spiral out of the sun, victim to the sun‘s rotation.  This pattern is known as the 

Parker spiral (Tascione, 1994).  

Since charged particles like protons are constrained to follow field lines through 

space, SEP can only reach Earth when field lines connect the Earth to the sun.  Field lines 

connect the west side of the sun to the Earth (because of solar rotation), so no particles 

originating from flares on the east side should be expected to be seen at Earth; the 

magnetic field lines have led those particles off into interplanetary space.  This matches 

observations; few flares in the extreme eastern areas of the sun produce SEP (Garcia, 

2004a). 

Not all flares have a well defined location.  Without some imaging system 

observing the solar disk during the flare, such as visible light or x-ray imagers, the 

location remains unknown.  Approximately 18% of flares in the Balch database have no 

known location (Balch, 2008a).  Any predictive algorithm will have to be able to forecast 

for these flares with null location data. 

X-Ray Flare Categorization 

 The categorization of flare by x-ray flux is based on flux.  The flare‘s maximum 

flux in the x-ray region is measured in watts per meter
2
 by the GOES in two channels, the 

.5 - 4 angstrom and 1 - 8 angstrom bands.  Flares with a peak x-ray flux between 10
-6
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W/m
2
 and 10

-5
 are given the category ‗C‘ for Common.  Flares with flux between 10

-5
 

and 10
-4

 are give ‗M‘ for Medium, and flares above 10
-4

 are called ‗X‘ for eXtreme.  

These categories are further separated by the numerical value of the flux; the category is 

followed by a number specifying the flux.  Therefore, a flare with maximum x-ray flux of 

5*10
-6

 would be labeled a ‗C5‘ flare.  Class C flares are common, with tens or hundreds 

of these per M flare.  Two additional categories called B and A exist for the flares one 

and two orders of magnitude smaller than C.  Class C and lesser flares are also the least 

likely to be associated with SEP events (Balch, 2008a). 

Classification of SEP Events Associated with Flares 

One difficulty with reporting SEP events lies in the fact that there is no perfect 

way to associate a SEP event with a particular flare.  Flares occur quite often.  Sensors 

(such as the GOES) detect a rise in protons.  SEP have a wide range of time to impact 

from the beginning of the flare, making predictions of arrival time difficult at best.  Some 

impacted within 40 min of the observance of the flare itself, while others range out into 

the hundreds of hours (Garcia, 2004a; Balch, 1999).  Thus, associating protons with a 

flare to produce ground truth is a tricky business.  The data used as ground truth for this 

analysis comes from Dr. C. Balch at NOAA, compiled over eighteen years of flares.  The 

observed protons have been associated as best possible with the flares that probably 

produced them. 

The next problem with reporting and classifying SEP events comes when a flare 

happens during a period of already high flux, whether from a previous flare, coronal mass 

ejection, or other event.  In this case, the flare may not have produced enough protons to 

be normally classified as a SEP event, but with the previously high proton flux, the total 
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proton flux is over 10 pfu.  The events are referred to as ‗Enhancements‘ and are NOT 

classified as SEP events in this analysis, for the event associated with that particular flare 

would not be a SEP event without aid.  Thus, any prediction must classify this type of 

flare as non-SEP if future flares are to be correctly identified. 

Coronal Mass Ejections 

Coronal Mass Ejections (CMEs) appear to be important if not essential for a SEP 

event to occur (Belov et al., 2005; Kahler and Vourlidas, 2005; Kahler et. al., 1984; 

Kahler, 1996).  This important role should not overshadow the valuable information for 

predictions to be gained from flare associations with SEP.  This research will focus on 

those protons which are associated with flares, so the CME or absence thereof will be 

used as a predictor for SEP alongside flare characteristics. 

Physical Characteristics 

The sun regularly erupts with huge masses of coronal plasma, called Coronal 

Mass Ejections.  CMEs of varying sizes occur at a variable rate of up to several per day.  

Propagation speeds in the interstellar medium vary between 200-1000 km/sec.  Though 

widely varying in size, these eruptions of coronal material average 10
15

-10
16 

g in mass, 

with a size comparable to half the radius of the sun, about 3*10
8 

m.  As much as 10% of 

the mass contained in the solar wind may be the direct result of CMEs (Foukal, 2004). 

Space-based coronagraphs are used to detect CMEs.  To measure the minimal 

brightness associated with the CME, an occulting disk is placed over the image of the 

sun, allowing very low levels of scattered light with brightness on the order of 10
-6

 of the 

sun‘s disk brightness to be observed and measured.  ―Statistical studies indicate that only 

about half of the CME‘s observed can be associated with flares or filament eruptions on 
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the visible disk,‖ (Foukal, 2004).  Many more CMEs may come from the rear half of the 

sun, yet the mechanism for the production and energy associated with these events is not 

conclusively identified (Foukal, 2004). 

Radio Data from CMEs 

Thousands of CMEs have been studied since they were first filmed in 1971 

(Foukal, 2004).  The pressure wave of the moving front of dense mass solidifies into a 

shock front near .3 astronomical units (AU) distance from the sun, and sometimes up to 1 

AU (the location of the Earth).  This shock front is known to produce Type II meter wave 

bursts, also known as Type II radio sweeps.  A Type II radio signature consists of two 

distinct bands which drift to lower frequency over a time scale of a few minutes.  These 

bands are usually interpreted as the fundamental and first harmonic plasma oscillations 

due to a disturbance in the corona.  The speed that these frequencies require (500-5000 

m/sec) are well beyond the local speed of sound waves, so the disturbances must be 

shock fronts travelling outward.  Type II radio data is known to be closely associated 

with the more energetic CMEs (Foukal, 2004). 

The ejected plasma travels through space towards Earth.  Near the sun, it travels 

through the sun‘s magnetic field for some tens of minutes as the burst travels outward the 

first few solar radii, emitting radio signals as it does.  This is known as Type IV radio 

data.  These radio burst can extend in frequency from the microwave region down to 

about a hundred kHz.  The most studied region is between 10-100 MHz.  It is generally 

accepted that Type IV radio data is the signature of a CME (Foukal, 2004). 

This study uses Type II and Type IV radio data as a proxy for CME occurrence 

since continuously available CME data is only available starting in 1996 (Yoshiro, 2008).  
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CMEs can occur without any radio data, and radio data can in some cases occur without a 

CME.  This study focuses on solar flares, however, and only tracks radio data within a six 

hour window near a flare.   

The Distribution of Flares 

Flares with SEP and without SEP 

Flares occur at all locations and at all magnitudes on the sun.  Though this 

analysis only tracks M1 and greater flares, flares of all magnitudes occur.  The majority 

of flares occur without any radio data, either Type II or Type IV (Balch, 2008a).  Of the 

3610 flares tracked, there were only 484 Type II events and 344 Type 4 events.  

However, flares with radio data of either sort are more likely to be associated with SEP 

events.  Shown in Figure 2 is a chart of all the tested flares, separated into categories by 

SEP event occurrence.  Each category (SEP or no SEP) is separated by whether or not the 

flares had any radio data.  Flares associated with SEP are twice as likely to have radio 

data as those without. 
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Figure 2. Fraction of Flares With and Without Any Radio Data 

 

 

Flares themselves are evenly distributed across the solar disk, as is shown in 

Figure 3.  Flares associated with SEP, however, are more prominent in the west.  This 

shows the importance of flare location mentioned earlier, as magnetic field lines connect 

the west side of the sun to the Earth.  Flares in the west are nearly twice as likely to have 

SEP events as those in the east.  
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Figure 3. Flare Frequency across Solar Longitude 

 

These graphs show two of many methods that flares associated with SEP can be 

separated from those without SEP.  Further analysis will reveal other methods and their 

value for classification. 

Current Practice in Prediction 

There are several methods used to predict SEP events.  The Air Force uses the 

Proton Prediction System (PPS), NOAA Space Weather Prediction Center uses the 

Proton Prediction Model (protons or PPM), and the Garcia model is no longer in 

operational use.   As PPS, PPM and Garcia were all used by the Air Force for predictions, 
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these three will be the focus of this report.  Also in the literature but not analyzed here are 

the JPL proton fluence model, which fits proton fluences to a log-normal distribution; and 

the Xapsos model, which uses the maximum entropy principle to generate a power law 

distribution for peak intensity of SEP events (Kahler et al., 2007). 

Garcia Model 

The first method of prediction to be considered is the Garcia model.  The Air 

Force Weather Agency used the Garcia model in a web-based interface hosted by the 

Space Environment Center (SEC).  This interface has not been available since H. 

Garcia‘s death in 2004.  This way of predicting SEP events relies on the factors of flare 

temperature, intensity, and location (Garcia, 1994a; Garcia, 1994b; Garcia, 2004a; Balch, 

1999; Balch, 2008b).  First, the maximum flux of the flare in the soft and hard x-ray 

region is recorded (<10 keV and 10-200 keV ), then the temperature is calculated via 

Chianti or Mewe algorithms.  It is found that anomalously low apparent temperatures 

correspond to a higher likelihood of a SEP event, as did a western location (Garcia, 

2004b; Garcia, 2004a).  Garcia found these results: 

Figure 1 [Here figure 4] shows the distribution of peak flare temperature 

with respect to peak logarithmic X-ray flux. (Peak temperature always 

precedes or is concurrent with peak flux.) This plot reveals several 

prominent features that characterize the temperature versus X-ray intensity 

relationship: On average, temperature increases monotonically with 

increasing X-ray intensity; SEP flares (diamonds in Figure 1) occupy a 

lower temperature stratum than normal flares (dots in Figure 1). The 

partially overlapping temperature distributions, fitted with quadratic 

functions, appear to merge approximately at the X-ray intensities of M1 

(10
-5

Wm
2
) and X10 (10

-3
Wm

2
) and diverge at midrange; the incidence 

(observed) density of normal flares thins out at higher X-ray intensities,  

while SEP flare densities remain nearly uniform over the full logarithmic 

intensity range (above M1) except for a  pronounced weakening near the 

upper and lower limits; and the total number of normal flares exceeds the  

number of SEP flares by a large factor, roughly 40:1.  (Garcia, 2004a) 
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Figure 4. Flare Distribution with respect to X-Ray Flux and Temperature, Divided Between SEP 

Events (Diamonds) and Non-SEP Events (Dots) Showing Dependence of SEP Events on Flare 

Temperature (Used with Permission from Garcia, 2004a) 

 

 

This data was used (Garcia, 1994a; Garcia, 2004a) to generate lines of constant 

probability as a method of prediction, as is shown in Figure 5.  Garcia‘s equation for 

probability must be solved at a given probability for temperature as a function of x-ray 

peak intensity at each point across the graph to produce one curve.  Solving it again at a 

new given probability yields more curves.  Flares can be predicted as SEP or non-SEP by 

their location on this graph.  As the maximum x-ray flux increases for a given 

temperature, (moving in a horizontal line across the graph) the probability of a SEP event 

rises continuously to the value at each numbered contour.  Unfortunately, the regression 

is not perfect.  While most SEP events are in the high probability regions, small numbers 

of flares without SEP fall into this region as well.  These were flares that occurred either 

on or beyond the solar limb or at far eastern meridian distances (Garcia, 2004a).  This 
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naturally follows, as solar location is a strong predictor of magnetic field connections 

(Tascione, 1994).  For Garcia‘s database, this predictor worked quite well.  This is the 

reason a longitudinal component is included in the Garcia model.  

Figure 5. Curves of Constant Probability of a SEP Event, Showing SEP Events (diamonds) and Non-

SEP Events in the Background (Used With Permission from Garcia, 2004a) 

Though the Garcia model is no longer in operational use, the parameters to 

recreate it can be obtained from the original papers.  Substantial work in this thesis went 

into recreating the model and verifying that it worked exactly as did the old model (see 

Chapter 3: Verification of the Old Garcia Model). 
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Proton Prediction Model 

PPM is the standard algorithm of NOAA (Balch, 1999).  PPM calculates its 

results based on a mix of soft x-ray peak flux, predicted proton flux, and Type II and 

Type IV radio data and produces a percent chance that the flare will be accompanied by a 

SEP event (Balch, 1999).  There is no direct input for the presence or absence of a CME; 

however the Type II and Type IV radio data serve in its place.  The integrated flux 

parameter is calculated from the onset of the x-ray event and proceeds to the half power 

point on the trailing edge of the event.  The prediction of maximum proton flux is based 

on the relationship of the log of the peak x-ray flux to the integrated flux of the associated 

event.  It also includes historical data from the next most recent event that occurred in the 

same active region on the sun, as this was found to give better correlations (Balch, 

2008b). 

Though the physical processes that govern SEP production and transport are still 

an area of active research, some work with validation has been done (Balch, 2008b).  All 

PPM data presented in this analysis comes from a modified form of the 1998 version of 

PPM, modified to process batch files of flares.  The modifications were checked against 

PPM to ensure that prediction values are unchanged.   

Proton Prediction System 

The Air Force uses the Proton Prediction System (PPS), for the prediction of SEP 

events.  PPS was designed by Smart and Shea in 1979 to predict the observations of SEP 

from observed intensity and spectra of solar events (Kahler et al., 2007).  It includes 

inputs for onset time, peak time and location as well as one of the following sources: x-

ray peak flux, radio peak flux, x-ray integrated flux and radio integrated flux.  PPS differs 
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from the previous model in that it does not produce a probability of a SEP event, but 

rather produces an estimated flux of protons (Kahler et al., 2007).  This can easily be 

converted to a prediction by applying the operational and scientific standard:  >10 pfu at 

10 MeV is a SEP event. 

In PPS, it is assumed that SEP are accelerated by solar flares and added to the 

interplanetary magnetic field within a quarter hour.  The maximum flux of protons at or 

above 10 MeV (J) in pfu is given (for Fxw being the GOES peak long x-ray flux in erg per 

cm
2
 per second and ΔT being the time between flare onset and peak) 

J ( E > 10 MeV ) = 30.67 * (Fxw * ΔT)
1.327

        (2) 

PPS was also used in this analysis in batch mode, and was cross-checked with the 

AF-Geospace version for individual runs to ensure correct predictions were made. 

Problems with the Current Models 

All current prediction algorithms evaluated here have problems, especially since 

they rely primarily on peak x-ray flux (though PPS can be run solely with radio data, it 

was run with x-ray peak flux during this analysis).  The magnitude of x-ray flux is 

insufficient to conclusively predict a SEP event.  Extreme flares (x-ray flux of 10
-4

 W/m
2
 

(X1) or greater) have been studied since 1978, producing SEP events roughly 20% of the 

time (Garcia, 2004a; Smart and Shea, 1996; Balch, 2008a).  While this is much higher 

than the 4% average for a flare in general, it is still inconclusive and requires additional 

information to make a good prediction.  Explanations for the reason that less than 100% 

of extreme flares produced protons tend toward solar longitude, but 4 out of 10 occurred 

at western or central locations.  The likelihood of a visible disk flare ―giving rise to a 

significant proton event was not strongly dependent on flare location.  Only the M- and 
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C-class proton parent flares exhibited a clear preference to occur west of the solar central 

meridian,‖ (Cliver and Cane, 1989).  Solar longitude is insufficiently accounted for in 

current models and its effects relative to flare peak x-ray flux must be examined.  Neither 

peak x-ray flux not longitude alone can explain the sometimes erratic link between flares 

and SEP.   

To highlight the problems in modeling, examine Figure 6, which shows the 3514 

recorded flares from the database (here the ordinary flares are green squares, the flares 

associated with SEP are blue triangles).  The figure shows how many flares there and 

how few are associated with SEP, just 104 out of the 3514 total flares.  The difficulty in 

modeling this comes from the fact that no good boundary or dividing line exists between 

the two types. 

The difficulty comes in the sheer number of flares, and how mixed the low peak 

x-ray flux areas are.  Flares associated with SEP tend to cluster bottom right (low 

temperature at a given x-ray flux) as Garcia noted, but no line can divide these groups 

perfectly.  More information is needed to classify these flares correctly. 
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Figure 6. SEP and Control Flares in the data from 1986-2004 
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III. Methodology 

The Data Set 

The flares for this analysis are taken from the raw 1 minute GOES data available 

at the Space Weather Prediction Center (SWPC) website, referenced at those times when 

SWPC recorded that a flare had happened (SWPC, 2008).  During the measured time 

period, 1 Jan 1986 until 31 Dec 2004, there were 3610 flares in the range M1 and above.  

The range M1 and above was chosen because approximately 98.5% of SEP events were 

associated with flares that occurred in this range, and the range misses tens of thousands 

of C class and below flares that rarely produce SEP (Balch, 2008b).  Not all flares that 

occurred during this time could be used.  96 flares were removed from the dataset 

because there was no data recorded for these periods due to sensor overloads.  Next, 708 

flares with unknown locations were assigned a latitude and longitude of zero to 

accommodate the training algorithm.  These flares were deliberately included in the 

dataset because the dataset needs to be as close to operational data as possible.  Flares 

must be observed in H-alpha, white light, or other imaging system to determine flare 

location on the sun.  Since the algorithm needs to be able to predict this sort of flare, it 

must be trained on it as well.  The nature of the model under analysis demands a value for 

all the predictors under consideration.  This holds true for both the location and the radio 

data.  In the radio case, the radio data can be either observed, not observed, or not 

available (due to no observatory taking data at the time of the event).  The net result is 

that some flares with no radio data actually could have had radio data that was not 

recorded.  The effect of this change on the final algorithm is assumed to be a slight shift 

for lower importance for radio data.  Again, as with location, this data resembles 
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operational data in this respect and so the shift is acceptable operationally if problematic 

scientifically.   

Each flare‘s peak x-ray flux in GOES data (.5 – 4 angstrom and 1-8 angstrom) 

was recorded and the integrated flux was computed.  The flux data is available only in 1 

min intervals, so the integrated data is merely the sum of the x-ray flux from the listed 

beginning of the flare to the listed end time, corrected by a factor of 60 to account for the 

conversion from minutes to seconds.  The temperature for each flare at maximum flux 

time was calculated as described in Chapter 2: The Mewe Temperature (White et al., 

2005). 

The dataset for SEP events was constructed by Dr. C. Balch, NOAA, from 

tracking flares from 1986 to 2004.  This database contains 127 SEP events, after events 

are removed because of location (behind the limb) or proton flux levels too low 

(enhancements).  These were matched up with flares from the GOES data by date and 

magnitude of flare.  When there were two or more flares with similar data occurring soon 

after each other, radio data was used as the discriminator between these similar pairs of 

flares.  Not all SEP events in the Balch database were added to the data.  All SEP events 

associated with C class flares were removed, as were all SEP events that did not 

correspond to a flare in the new database.  After removing these, there were 104 SEP 

events in the time from 1986-2004. 

The Process of Verifying Models 

For an analysis of the quality of each prediction algorithm, each must produce 

results for every flare in the database with exactly the same input data.  PPS and PPM 

exist in operational fashion, but the Garcia model does not. 
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Since the death of Garcia in 2004, operational use of the Garcia model has ceased.  

Any usage of the Garcia model will have to start with a recreation of the model before 

any additional data is entered for classification.  Given the new data from the database, 

the new model will not be exactly the same as the old.  The new model should be close to 

the old, and analysis of how different the models are relies on the Fréchet Distance 

measure. 

First, the Garcia Model is reproduced exactly from the coefficients published, and 

the resultant model is referred to as Garcia 1994 (Garcia, 1994a).  The coefficients are 

tested against a new model produced by a Generalized Linear Model analysis when used 

on the new dataset, using only those predictors that Garcia chose in his 1994 paper, 

namely x-ray peak flux, temperature, the product of temperature and x-ray peak flux, and 

longitude.  This is called the Reworked Garcia model.  Once the two models are proven 

to be similar, new predictors can be added to the Reworked Garcia model in an attempt to 

predict SEP events better.  The result of this is a new model henceforth called Garcia 

2008. 

Form of Garcia 1994 

The original Garcia model uses a standard linear model: 

p

j

jjxPg
1

)(           (3) 

with x a vector of observations and as a vector of empirically determined weights 

(Garcia, 1994a).  To map this value η onto the probabilistic interval P from (0,1), Garcia 

used a link function )]1/(ln[)( PPPg .The functional relationship therefore is 

e

e
TXP

1
],),[log(            (4) 
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In this model, there are 5 terms, X (x-ray peak flux in W/m
2
), T (temperature in 

MK), an interaction between X and T, a constant, and a dependence on heliographic 

longitude, θ (1 if the flare occurred east of E40 central meridian distance on the sun, zero 

otherwise).  The effectiveness of the model was determined by a standard deviation 

between the function P (Log(x), T, θ) and the occurrence of the event (Garcia, 1994a). 

Comparison of Garcia 1994 with Reworked Garcia 

In order to prove that the Garcia Model has been recreated accurately and updated 

properly with new flare data, I present a comparison of the two forecast algorithms, 

Garcia 1994 and Reworked Garcia, produced following his methodology while operating 

on new data.  In the following figure, the lines of constant probability are plotted against 

data.  A given flare will have a (x,y) coordinate on the graph given by its x-ray peak flux 

and its temperature, respectively.  Its location on this graph relative to the lines of 

probability gives an estimate of the Garcia model‘s prediction of a SEP event.  Any flare 

between the .4 line and the .5 line, for example, has a 40-50% chance to be associated 

with a SEP event.  First, the old probability curves in Figure 7: 

 

 

 



 28 

 

 

 

 

Figure 7. Garcia Model from 1994 Showing Probability Contours for the Prediction of SEP Events to 

Accompany Flares, Using Garcia’s Original Data (Used With Permission from Garcia, 1994a) 

 

 

Coefficients for these curves for Garcia 1994 (see Equation 3) are 

*5684.1*][1286.2049.][980.12558.12 TXLogTXLog           (5) 

This holds for X the x-ray peak flux in W m
-2

, T is the temperature in 

Megakelvin, and ‗θ‘ is equal to 1 if the heliographic longitude of the flare is east of E40 

on the sun, and 0 if the flare is west of E40. 

 For purposes of comparison, it is vital to assure ourselves that the new version of 

the Garcia Model is the same model quantitatively.  The coefficients of both the Garcia 

1994 and the Reworked Garcia models are compared.  Both models have 5 terms, a 

constant, log of x-ray peak flux, temperature, the product of x-ray and temperature, and 

finally a binary term equal to zero for flares west of East 40 longitude, and equal to one 

for flares on the east of that dividing line.  Here is a table comparing the results of the two 

models: 
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Table 2. Coefficient Comparison between Garcia 1994 and the New Model 

Model Garcia 1994 Reworked Garcia Ratio  

Constant 12.2558 11.300 1.085 

Log ( X-ray ) 1.980 2.875 .689 

Temp .2049 .141 1.453 

Log ( X-ray ) * Temp .1286 .068 1.891 

East / West -1.5684 -1.706 .919 

 

 

 

It should be noted that while the coefficients vary between models, sometimes 

strongly, that correlation is preserved in the sense of sign: each coefficient in the new 

model is the same sign as the corresponding coefficient in Garcia 1994.  This is important 

as the sign of the coefficient declares how that observable (temperature, x-ray peak, etc.) 

causes the result to vary.  A change in sign would imply that the models are using the 

data in the opposite fashion of the previous model.  This would completely destroy any 

claims of similarity.  The values for the ratio (1 represents a perfect correspondence, 0 

and infinity represent no correspondence) are between .5 and 2, demonstrating imperfect 

alignment but good correspondence.  The farthest removed, temperature x-ray 

interaction, is far off.  Reasons for this discrepancy can be tracked to the different data 

sources; the Garcia model used a list of flares from Sep 1977 to May 1991. The actual 

reduced dataset is not available for comparison, but it was not complete.  As Garcia 

notes: 

It [the data set] is not homogenous: few moderate-to-weak normal flares 

(<M8) are included before 1984; flares from 1984 May to 1988 September 

are mainly SEP flares; but from 1988 September to 1991 July, both 

normal and SEP type ≥ M1 flares have been included.  (Garcia, 1994a) 
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 This lack of data at the lower ends of the power spectrum (>M8) has an effect on 

the coefficients: further regression trials with a subset of the new data (>M2, >X1.5, 

>X5) suggest that the fewer low temperature flares (mainly flares without SEP) are 

included, the lower the interaction and temperature coefficients fall, with temperature 

venturing negative for thresholds above X5.  The non-homogenous exclusion of moderate 

flares from the original Garcia model has had an effect on the regression.   

Comparing Curves: Maximum Distance   

There are several ways to determine how similar to curves are to each other.  This 

analysis uses the Fréchet Distance (see Appendix A), which is a measure of how far apart 

two curves are.  In words, the Fréchet Distance is ―if a man is walking a dog, and the man 

must travel on one curve, and the dog on the other, the Fréchet Distance is the shortest 

possible leash the man can use,‖ (Dumitrescu and Rote, 2004).  This analysis has been 

accomplished for the Garcia 1994 and Reworked Garcia models for both the 50% of SEP 

and 90% Probability of SEP Event curves.   

The Fréchet Distance for the 50% curve is a modest .629, while the 90% has a 

value of .838.  These numbers represent actual (Euclidean) distances across the graph, 

and thus can be understood in a relative sense by comparison to the maximum of the data.  

When compared to the maximum temperature, the 50% probability curve Fréchet 

Distance is 1.57%, while the 90% curve distance is 2.10%.  In other words, the new 

model‘s curve is 2% as far from the old model‘s curve as from the axis.  This shows that 

despite their differing coefficients, these two models produce similar curves of equal 

probability for predicting SEP events.   
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As a comparison, I examine temperature measurements for Norman, OK starting 

in 1995 (Brooke and Doswell, 1996).  The data compares the actual observed 

temperatures for the area with three models predicting 12-24 hours in advance.  The three 

models are from the National Weather Service (NWS), the Limited Area Fine Mesh 

(LFM), and the Nested Grid Model.  The Fréchet Distances for each of these curves, as 

compared to the observed temperature, is revealing.  The NWS prediction has a Fréchet 

Distance of 7, while the NGM prediction has a Fréchet Distance of 7.810, and the LFM 

prediction has a Fréchet Distance of 7.071.  These numbers are absolute (Euclidean) 

distance across the graphs, and can again be understood best as a percentage of maximum 

range (temperature).  The maximum range or temperature of the data is 103 F, so each 

Fréchet Distance can be compared to that.  In this fashion, the NWS prediction has a 

percentage of .068 or 6.8%, the NGM has a percentage of 7.58% and the LFM has 

6.87%.  Compared to the Garcia models, with Fréchet Distances in percentage form of 

only 1.57% and 2.10%, the weather models are much more different. 

The weather data is analyzed here because single day predictions are assumed to 

be relatively accurate and relatively close to each other.  As the Garcia curves had much 

smaller percentage-wise Fréchet Distances than the weather predictions did, we can 

assume the two Garcia models are more similar to each other than the weather models are 

to observations.  Thus, the Fréchet Distances between the old and new Garcia models are 

small enough that I can confidently claim them to be similar. 

Proof of the Recreation of Garcia 1994 with New Coefficients 

This overall assessment shows that the new model is similar to the Garcia 1994, 

and the areas of greatest difference, the temperature x-ray interaction coefficient, can be 
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explained by database differences between Garcia in 1994 and the current model‘s data 

from 1986-2004.  Further, as the current database includes all flares magnitude M1 and 

greater (less those removed as noted earlier), and no areas with reduced reporting, the 

new Garcia coefficients should be regarded as updated versions of the old. 

From here, new coefficients can be added to the new model to increase its ability 

to discriminate between SEP and non-SEP events.  This will be done with the 

Generalized Linear Model method.  The result of these additions is the algorithm Garcia 

2008. 

Modeling Techniques 

The Generalized Linear Model 

One method to design an algorithm to classify and predict solar proton events 

with general statistical techniques is a Generalized Linear Model (GLM), which is a 

flexible form of a least squares regression (Hardin and Hilbe, 2001).  It relates the 

response variable (SEP event occurrence) to the predictors (x-ray flux, temperature, etc.) 

by the use of a link function (in this case, the binomial distribution given by the 

occurrence or non-occurrence of SEP events requires the logistic equation) (Hardin and 

Hilbe, 2001).  In this form of model, each predictor is compared to the response and the 

variance in the response that can be explained by the predictor is calculated via the 

likelihood function.  Predictors with a high relevancy will show up as each predictor is 

assigned a p-value based on the likelihood that variance in the predictor explains variance 

in the response.  The p-value is a measure of the likelihood that the measured variation 

arose by a change in the related predictor; thus, p-values below .05 are considered 

significant, while p-values above that arbitrary limit are considered not significant 
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(McClave, 2008).  This value of .05 can be raised if the amount of data far exceeds the 

number of parameters (Hardin and Hilbe, 2001).  During the modeling process, predictors 

are removed from the model in order of relevancy to see what the effects of removal are; 

removal of one ―not significant‖ factor can remove some predictor variance that did 

explain the change in the response.  In this case, the remaining predictors will become 

more significant as the variance of the response still needs to be accounted for.  However, 

the p-values of the predictors will not change at the same rate, allowing the most useful 

predictors to be singled out.  When all remaining variables have a p-value that indicates it 

is relevant to the prediction, each is evaluated.  

The evaluation of coefficients in a Generalized Linear Model is done by 

maximum likelihood estimation or least squares estimation.  Maximum likelihood 

estimation takes the values observed, assumes a distribution with some mean and 

variance, and calculates what the mean and variance must be for the observed data to be 

the most likely observation.  Formally, this is done by setting the partial derivative of the 

log of the prediction equal to zero for the variable of interest (Gumbel, 1958).  As the 

number of observations increases, the probability that this mean is the mean of all the 

data approaches unity.  This calculated mean can then be used as a fit coefficient.  Least 

squares method minimizes the sum of the squared deviations between the predicted value 

and the measured value (Bulmer, 1965). 

This method of Generalized Linear Modeling has a useful trait: it allows the user 

to specify interaction effects as separate predictors.  If two or more predictors influence 

each other, producing non-linear effects, this can be measured and accounted for by a 
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Generalized Linear Model.  Higher order terms can thus be treated in nearly the same 

fashion as linear terms.  

Logistic Regression 

The result of this GLM process is a number z which is the sum of coefficients 

times the values of the parameters (x-ray flux, temperature, etc.).  This number may be 

positive or negative, and is not asymptotically smooth at the boundaries [0,1], where any 

realistic prediction must end.  These are awkward features for a prediction.  A link 

function is used to map the results into the interval [0,1] for predictions P (z).  In this 

case, the solution is to use a logistic regression.  This maps the output function into the 

interval [0,1] using a logistic function as the link function: 

( )
( )
1 ( )

P z
z Log

P z
                (6) 

 Logistic regression is suited for applications where there are many predictors and 

only two outcomes, here SEP event or no SEP event (Brannick, 2006).  Fitting to the 

logistic function prevents values from going beneath 0 and from going over 1, both 

theoretically impossible.  The logistic equation is plotted below in Figure 8. 
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Figure 8. The Logistic Equation 

 

Classification 

 This method provides some insight into the problem of class separation.  The 

focus of this work will be to find the best process that will allow the separation of the two 

distinct classes: flares associated with SEP and flares not associated with SEP.  To be 

useful for forecasting purposes, this process must use only data that is readily available, 

such as GOES data.  This work will focus on extending and enhancing the current state of 

the art for prediction. 

These results will be compared to the previous (Garcia) model and strengths and 

weaknesses of all the models will be explored. 
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Quantitative Measures of Success  

False Alarm Rate and Missed Forecast 

To determine the quality of a forecast, some definitions are needed.  A correct 

forecast is one where the event was forecast and occurred (A).  A False Alarm (FA) is 

where the event was forecast but did not occur (B).  A Missed Forecast (MF) is where the 

event was not forecast but occurred anyway (C).  A correct null is where the event was 

not forecast nor did it occur (D).  The total number of events is N = A + B + C + D.  A 

two way truth table would appear as such: 

 
Table 3. Definition of the Two Way Truth Table for SEP Prediction 

  Event   

  Yes No  

Prediction Yes A B FA 

 No C D  

  MF   

 

Some formulas for calculating the quality of the prediction (Balch, 2008b): 

Probability of detection ( POD ) = A / ( A + C )     

False Alarm Rate ( FAR ) =  B / ( A + B )  

Percent Correct ( PC ) = ( A + D ) / N 

None of these measures really takes into account the quality of the forecast.  A .97 

percent correct prediction rate sounds great, but here it is merely the result of always 

predicting a non-event.  Always predicting ‗no SEP event‘ is correct 3410/3514 or 97% 

of the time.  This is a high prediction rate, but contains no real forecast dependent on 
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data.  Clearly, these measures of prediction lack real information on the quality of the 

forecast. 

The Heidke Skill Score 

The comparison between the prediction methods (PPM, PPS, Garcia) relies on a 

skill score known as the Heidke skill score (HSS).  This number ranges between -∞ (for 

incorrect predictions) to +1 (for all correct predictions).  Zero is a skill score 

representative of a prediction method no better than guessing. The formula for calculating 

the Heidke skill score is based on the argument: (Balch, 2008b referencing the original 

work by Heidke, 1926;) 

Probability (event = Yes) = ( A + C ) / N 

Probability (forecast = Yes) = ( A + B ) / N 

Thus, the probability for a hit by chance (e.g. the probabilities are independent) is 

the product of the probabilities of each: 

P (Event = Yes ∩ Prediction = Yes) = ( A + C ) * ( A + B ) / N 
2
 

A chance correct null is similar to the positive: 

Probability (event = No) = ( B + D ) / N 

Probability (forecast = No) = ( C + D ) / N 

So the probability of a correct null by chance is: 

P (Event = No ∩ Prediction = No) = ( B + D ) * ( C + D ) / N 
2
 

Thus, the probability of a correct prediction by chance (both correct forecasts and 

nulls) is the sum of the two probabilities, or 

( ( A + B ) * ( A + C ) + ( B + D ) * ( C + D ) ) / N 
2
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Multiplying by the number of trials N, we obtain the number of correct forecasts 

by chance: 

E = ( ( A + B ) * ( A + C ) + ( B + D ) * ( C + D ) ) / N 

We can then define the Heidke skill score by the number of correct results more 

than by chance per the total number of attempts less chance successes:   

HSS = ( A + D – E ) / ( N – E )          (7) 

 As noted earlier, the Heidke skill score ranges from -∞ (all wrong) to +1 (all 

correct), with 0 the equivalent of exactly any many right as might be predicted by chance.  

For an example of the Heidke Skill Score, I return to the temperature forecasts for 

Norman, OK (Brooke and Doswell, 1996).  Each of the three forecasts for the next day‘s 

temperature is a forecast and can be tracked by a skill score.  In order to keep the format 

of the predictions the same, each prediction was assigned binary score tracking whether 

the prediction was for an increase in temperature or not (No change in temperature is 

classified with no).  This was compared to the observed data, also formatted the same 

way.  This format allowed a simple comparison of these predictions to SEP predictions 

by allowing for correct forecasts (the forecast predicts temperature going up, and the 

observed temperature rises), false alarms (the forecast predicts a rise in temperature but 

no rise occurs), missed forecasts (the forecast predicts a fall in temperature or no change, 

but the temperature rises), and correct nulls (neither the prediction nor the observation are 

of a rise in temperature).  The results are that LFM has a HSS of .473; NGM has a HSS 

of .571; and NWS has a HSS of .517.  By looking at the HSS, it is readily apparent that 

the NWS model is the best at forecasting changes in temperature.  Also, we note that 
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even an easy forecast, a hotter/colder forecast for 12-24 hours in advance, has a HSS of 

no more than .571.   

A second comparison is a more standard weather comparison, with correct 

predictions as those within 3 degrees of the observed temperature, false alarms as those 

predictions 3 or more degrees above the observed, and missed forecasts 3 or more 

degrees below the observed.  In this method of analysis, there are no nulls.  In this case, 

the HSS comes out as -.359 for LFM, -.350 for NGM and -.272 for NWS.  Though it may 

seem trivial to change the range for a good prediction from 3 degrees to something larger, 

and therefore obtain a positive HSS, this does not work.  The HSS rises to zero but does 

not become positive.  The Heidke Skill Score tracks the number of predictions right by 

chance as well as the total number correct, so by the time the range is raised to 15 

degrees, the HSS is at zero for two of the three systems—there are no more correct 

predictions than can be explained by chance. 

This is not a comprehensive analysis of the Heidke skill score, merely a note to 

understand the relevance of a Heidke score above .5, and the value of finding the 

maximum score.   

Thresholds 

Each algorithm needs some method of determining its prediction.  The Air Force    

needs a definitive answer, yes or no, SEP or Non-SEP, for each and every flare (Kahler et 

al., 2007).  Thus, some sort of threshold must be established, such that every flare falling 

below that threshold will be predicted as not having a SEP event, and every flare at or 

above the threshold will be predicted to have a SEP event.  In Garcia 1994, Garcia 2008, 

and PPM, the numbers come out as percentages.  As the prediction is in the form of a 
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percentage, it has a natural threshold of 50%.  PPS, which outputs a predicted flux of 

protons has a threshold at 10 pfu, the operational standard.  However, subsequent analysis 

reveals that these are not the optimal thresholds to choose.  Substantial improvement can 

be found by optimization of the threshold with respect to Heidke Skill Score. 

Truth Tables 

For comparison, all results will include a truth table, detailing the results into 

categories for correct forecasts (A), false alarms (B), missed forecasts (C), and correct 

nulls (D). 

 
Table 4. Truth Table Definitions 

 Event  

 Observed  

Event  Yes No  

Forecast Yes A B FA 

 No C D  

  MF   

 

An ideal or perfect classifier would appear as in Table 5: 

 

 
Table 5. Ideal Truth Table for Flare Database 

  Event   

  Observed   

Event  Yes No  

Forecast Yes 104 0 FA 

 No 0 3410  
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Events in a perfect classifier are perfectly separated into correct forecasts (A) and 

correct nulls (D). 

Optimized Prediction Algorithms 

The Process of Optimization 

As noted in the previously, all of these predictive algorithms have some threshold 

or threshold value above which they predict a SEP event.   This limit is either based on 

probability (.5 or greater) or a physical definition (10 pfu or greater), but these limits 

need not be regarded as hard limits.   Indeed, as the optimization process shows, much 

higher HSS results can be obtained by shifting the threshold values.   In this process, the 

threshold value is altered and a new HSS is obtained at each value.   As the threshold 

increases, the false alarm rate decreases, but the missed forecast rate rises.  The 

percentage correct also falls as the threshold rises, but since the vast majority of the data 

is nulls in the low probability region, the threshold must be high enough not to receive 

false alarms from this data.  The false alarm rate, HSS, missed forecast rate, and correct 

forecast rates are all shown in Figure 9.  While all these numbers are displayed as 

percentages, the HSS calculates from absolute numbers.  Thus, the false alarm rate is 

more important than it seems, as the number of false alarms is high.  The HSS line rises 

smoothly to a maximum as fewer false alarms are registered, then falls off again as the 

number of correct forecasts begins to fall and the corresponding number of missed 

forecasts rises.  Maximizing the HSS is thus a simple matter of finding the maximum of 

this curve, as in Figure 9.   While the graph does have occasional local maxima, the 

overall maximum can be found by perturbing the chosen threshold significantly and 

looking for the slope.   The curve is fairly flat at the maximum, and thus it is unsurprising 
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that it jumps up and down slightly around the true maximum.  This is due to the discrete 

nature of the data.   A small increase in threshold will not add missed forecasts and 

remove false alarms at the same rate, and thus the curve jumps.  These jumps are usually 

small, on the order of .02.  In the case where two or more maxima exist, to the limit of 3 

decimal places, the lowest threshold is chosen to minimize the number of missed 

forecasts.  This process will be applied to all the algorithms. 

 

Figure 9. SEP Prediction Threshold Effects on Garcia 1994 

 

 

For additional clarity, this graph is replotted in Figure 10 by absolute number of 

successful forecasts, false alarms, and missed forecasts.  Since the HSS maximizes the 

number correct while penalizing equally for each false alarm and missed forecast, the 
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maximum score occurs at and around the intersection of the lines for false alarms and 

missed forecasts. 

 

 

 
Figure 10. SEP Prediction Threshold Effects on Garcia 1994, Absolute Numbers 
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IV. Results     

Original Results 

All the flares in the database (3514 flares, after the removal of <M1 flares and 

those that overloaded the sensors) were run through each algorithm for an initial 

prediction.  The overall accuracy of these predictions relative to the SEP truth data from 

NOAA will be compared to the results from the optimized algorithms and to Garcia 

2008. 

Garcia 1994 

The Garcia 1994 algorithm is the first algorithm tested for prediction.  Below is a 

truth table of the data, followed by a graph, showing results.  Here, successful forecasts 

are blue triangles, missed forecasts are pink diamonds, and false alarms are green 

squares.  This format will be standard for displaying results over the next graphs.  Again, 

this uses a 50% or .5 threshold for prediction.  The HSS for Garcia 1994 is .342.  The 

algorithm performs well (few false alarms or missed forecasts) at high x-ray regions and 

poorly at low regions.  The truth table follows as Table 6, and the results are shown in 

graphical form as Figure 11: 

 
Table 6. Truth Table for Garcia 1994 

 Observed   

Forecast  Yes No   

Yes 50 119 FA 

No 54 3292   

  MF     
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Figure 11. Garcia 1994 Forecast Results at 50% threshold 

 

Details of the Garcia 2008 Model 

After using a 5 input linear model to compare the Reworked Garcia model to 

Garcia 1994, I added more terms into it to improve its forecasting ability.  This new 

model is called Garcia 2008.  The Garcia 2008 model is similar to the original Garcia 

model in many respects.  It has inputs corresponding to the log of the x-ray flux, 

temperature, interaction and longitude, as did Garcia 1994, but it also includes the 

existence of Type II and IV radio data, and the integrated x-ray flux.  Also, it references 

the numerical value of the longitude rather than a binary expression for the flare location 

east of E40 on the sun.  This selection of predictors was chosen as described in the 
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Generalized Linear Model section, by removing the predictors with highest p-value one 

by one until only relevant ones were left.  The result of the model is a number between 0 

and 1 representing a probability that the associated flare will produce SEP.  It requires a 

threshold, just like Garcia 1994 and can be optimized with respect to that threshold.  It 

cannot predict with no missed forecasts unless the threshold is set to zero, which makes 

using the algorithm useless.   It performs better at lower maximum x-ray flux than does 

Garcia 1994, and better overall.  Coefficients for Garcia 2008 are listed in Table 7: 

 
Table 7. Coefficients for Garcia 2008 

Predictor Coefficient 

Constant -54.597 

Log ( Xray ) -19.930 

Log ( Xray ) 
2
 -2.050 

Temperature 2.525 

Temperature 
2
 -.030 

Log ( Xray ) * Temperature .4375 

Longitude .013 

Presence of Type II radio data .3577 

Presence of Type IV radio data 1.040 

Integrated Flux 2.730 

Integrated Flux
2
 -.3725 

 

 

Further details and usage of the model are listed in Appendix B. 
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Results from Garcia 2008 

Garcia 2008, using a threshold of .5, produces a HSS of .387, slightly better than 

Garcia 1994.  Here are the results in Figure 12 and Table 8, with successful forecasts as 

blue triangles, missed forecasts as pink diamonds, and false alarms as green squares: 

 

Figure 12. Results of Garcia 2008 Predictions at a 50% Threshold 

 

Table 8. Garcia 2008 Truth Table at a 50% Threshold 

Truth Table  
 

Event forecast Observed 
 

 Yes No 
 

Yes 29 13 
FA 

No 75 3397 
 

 MF  
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PPS  

PPS is the best algorithm when it comes to predicting SEP events with no missed 

forecasts, however the ability to have no missed forecasts comes at the price of too many 

false alarms.  For a threshold at 10 pfu, PPS has 2077 false alarms, a false alarm rate of 

about 59%, and only 1 missed forecast.   This indicates that whenever PPS makes a 

prediction for a SEP event, there is a 59% chance that it is wrong.  This algorithm has a 

HSS of .036, indicating is it barely better than a random prediction.  As a different way of 

considering it, note that an algorithm that always predicts a SEP event will have only one 

additional success (104) and more false alarms (3410 instead of 2077).   If a prediction of 

a SEP event each time a flare occurs is good enough, then no algorithm is needed at all.  

The results are shown in Table 9 and Figure 13: 

 
Table 9. PPS Truth Table at 10 pfu 

Truth Table   

event forecast Observed  

 Yes No  

Yes 
103 2077 

FA 

No 
1 1334 

 

 MF   
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Figure 13. PPS Results at a Threshold of 10 pfu 

PPM 

PPM is the final algorithm to be considered.  PPM includes more input 

information with which to make predictions, such as location, radio data and integrated 

flux.  However, at the .5 threshold, it has problems with too many missed forecasts.  Its 

HSS comes out at .093, as seen in Table 10 and Figure 14: 
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Table 10. PPM truth table 

Truth Table   

event forecast Observed  

 Yes No  

Yes 
6 10 

FA 

No 
98 3401 

 

 
MF 

  

 

Figure 14. PPM Results at 50% 
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Comparison of all Unoptimized Prediction Algorithms 

None of the prediction algorithms is particularly effective.  All of them have 

either too many false alarms or too many missed forecasts.  The results are listed below 

in Table 11 for easy comparison: 

 
Table 11. Heidke Skill Score Comparison for Unoptimized Algorithms 

Algorithm HSS POD FAR PC 

Garcia 1994 .342 .432 .642 .923 

Garcia 2008 .387 .269 .363 .936 

PPS .036 .461 .634 .923 

PPM .093 .423 .577 .929 

 

Optimization 

Following the low skill scores, each algorithm was optimized with respect to its 

skill score to see how well it could predict. 

Optimized Garcia 1994 

 The Garcia 1994 model benefits from optimization.  At a threshold of .58, it 

obtains a HSS of .371, up from its previous HSS of .342, as shown in Table 12 and 

Figure 15: 

 
Table 12. Garcia 1994, Comparison Before and After Optimization 

Unoptimized  

Truth Table Before  

Optimized 

Truth Table 

  

After 

 

Event  Observed  
Event  Observed  

Forecast Yes No 
 Forecast Yes No  

Yes 50 119 
FA Yes 

45 81 
FA 

No 54 3292  No 59 3330  

 MF  
  MF   



 52 

 

 

 

 

Figure 15. Garcia 1994 Forecast Results After Optimization 

 

Optimized Garcia 2008 

While the ‗original‘ version of Garcia 2008 was merely for comparison, the 

working model is the optimized version.  This model has a HSS of .526, well above the 

HSS for Garcia 1994.  It has a threshold at .18.  The results are seen in Table 13 and 

Figure 16. 
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 Table 13. Garcia 2008, Comparison Before and After Optimization 

Unoptimized 

Truth Table   

 Optimized 

Truth Table 

  

Forecast Observed  Forecast  Observed  

 Yes No   Yes No  

Yes 
29 13 

FA Yes 
60 58 

FA 

No 

75 3397 
 No 

44 3352 
 

 MF    MF   

 

 

Figure 16. Optimized Garcia 2008 Forecast Results 

Figure 17 and Figure 18 are graphical representations of the bad forecasts of 

Garcia 2008.  Flares with unknown longitude, adding no information, are not plotted 
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here.  The false alarms show little pattern, spread evenly across the sun‘s longitude.  The 

only exception is between 40-60 West, where the false alarms share a peak with missed 

forecasts.  The missed forecasts, however, show a definite pattern in the west.  This is 

confirmation that the longitude is important to Garcia 2008, but to rely on it too much 

raises more false alarms in that area.   

 
Figure 17. False Alarms from Garcia 2008 by Longitude 
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Figure 18. Missed Forecasts for Garcia 2008 by Longitude 

 

 

 

The presence or absence of radio data for both false alarms and missed forecasts 

is shown in Figure 19.  The largest number of bad forecasts is for missed forecasts with 

no radio data.  The SEP events associated with these flares are extremely hard to predict.  

They have no radio signature, either Type II or Type IV, yet there was a SEP event.  This 

is evidence radio data is not required for a SEP event and that there are other mechanisms 

at work here.  While SEP events with no radio data are hard to predict, the opposite is not 

true: having some radio data means a much lower rate of bad forecasts, both false alarms 

and missed forecasts.   
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Figure 19. All Incorrect Forecasts from Garcia 2008, by Radio Data 

 

Optimized PPS 

PPS has the greatest change during the optimization process.  Previously, its HSS 

was a mere .036, and it had 2077 false alarms.  This is because it used a threshold of 10 

pfu, the operational value representing a SEP event.  However, since the threshold 

functions in the predicted measure, it can be changed at will while maintaining the 

operational measure for flares when they are observed.  PPS is optimized with a HSS of 

.388 at maximum, with a threshold of 720 pfu.  The results are in Table 14 and Figure 20: 
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Table 14. PPS Truth Table, Before and After Optimization 

Unoptimized 

Truth Table 

   Optimized 

Truth Table 

   

Forecast  Observed  Forecast  Observed  

 Yes No   Yes No  

Yes 

103 2077 

FA Yes 

48 83 

FA 

No 

1 1334 

 No 

56 3328 

 

 MC    MC   

  

Figure 20. Optimized PPS Forecast Results 
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Optimized PPM 

When optimized, PPM obtains a higher HSS.  Originally at a threshold of .50, its 

HSS was .093.  After optimization, its threshold is at .30 (the number above which a SEP 

event is predicted), and its HSS goes up to .405, showing a much improved forecast 

ability.  Its comparison truth table is now  

Table 15 and its graphical results as Figure 21: 

 
Table 15. PPM Truth Table, Before and After Optimization 

Unoptimized 

Truth Table 

   Optimized 

Truth Table 

   

Forecast  Observed  Forecast  Observed  

 Yes No   Yes No  

Yes 6 10 FA Yes 44 60 FA 

No 98 3401  No 60 3351  

 MC    MC   

Unoptimized 

Truth Table 

   Optimized 

Truth Table 

   

Forecast  Observed  Forecast  Observed  

 Yes No   Yes No  

Yes 6 10 FA Yes 44 60 FA 

No 98 3401  No 60 3351  

 MC    MC   
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Figure 21. PPM Forecast Results after Optimization 

Comparison of Heidke Skill Scores for Optimized Algorithms 

Each of the algorithms listed in Table 16 has improved under the process of 

optimization.  The best forecasting algorithm is Garcia 2008, by more than .120 HSS 

points.  This is also a rise of .184 over the previous best method of prediction, 

unoptimized Garcia 1994.  This is a tremendous change in predictive power, particularly 

over the operational algorithms of PPS and PPM.   

 
Table 16. Heidke Skill Score Comparison for Optimized Algorithms 

Algorithm Unoptimized HSS Optimized HSS Threshold 

Garcia 1994 .342 .371 .58 

Garcia 2008 .387 .526 .18 

PPS .036 .388 720 

PPM .093 .405 .30 
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Verification with Modern Flares  

When a model is trained and tested on the same database, a problem called 

overtraining can result (Irizarry, 2006).  An overtrained model is not general but rather 

constructed so as to maximize the result for the given information.  In extreme cases, the 

model remembers every training data point and can therefore perfectly classify that one 

dataset.  In areas outside the trained region the model performs less well.  In the worst 

cases, the model may begin to fail entirely when presented with the new data.  In the case 

of solar flares, if the database were not representative of the standard types of solar flare, 

for example if all flares above X1 had been recorded with an accompanying SEP event, 

the model would be trained to predict SEP events for all X1 and greater flares, no matter 

what their other features. 

The solution for this problem is simple: test the model on a new representative 

database.  Fortunately, there is plenty of data available, as the flare database ends 31 Dec 

2004.  There have been many solar flares since then.  For validation purposes, I used the 

flare data from NOAA‘s Space Weather Prediction Center (SWPC, 2008), augmented 

with radio data from NASA (Kaiser, 2008).  This was correlated with NOAA‘s database 

of SEP events to generate a new list of flares over the span of 1 Jan 2006 - 31 Dec 2007 

(SWPC, 2008).  There were 138 M1 and greater flares during this period, and three SEP 

events.  The three SEP events were clustered in December of 2006, on 5 Dec, 13 Dec and 

14 Dec.   

Each algorithm is tested on this new data, and each has a new HSS associated 

with the new data.  While changing the threshold again would allow further optimization 

(in this case the HSS for Garcia 2008 rises from its new value to .443, equal to the best of 
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all the algorithms on this dataset), this is not performed here because this is the testing 

database.  The purpose of the testing database is to find out how the algorithm performs 

on new data.  It is a test of the optimization procedure.  It is unlikely for any of the 

algorithms to do better than in the training dataset (unless the verification dataset is 

selectively chosen to include only ‗easy‘ flares), and will likely do worse.  This is 

because they were optimized to fit the training set as perfectly as they could.  If the new 

verification dataset were identical, in a statistical sense, to the old dataset, then the new 

scores would be equal to the old.  Otherwise, the scores will fall.  This is not a problem, 

we are looking for proof that the algorithm still performs in this new region. 

Garcia 1994 does badly with the new data, with a HSS of just .229.  This is quite 

a change from the previous values of optimized HSS at .371.   

When the data is examined with PPM, there is also a fall.  The value of PPM at 

the optimized threshold, set at .3, is .222, a fall from the optimized value (.405).  In this 

dataset, PPM does worse still far above the HSS it had with the original dataset before 

optimization (.093). 

For PPS, the situation is similar to the original dataset.  On the verification data, 

PPS has a HSS at .443.  This is the only algorithm to show an increase in HSS between 

the training dataset and the verification dataset.   

For Garcia 2008, the HSS comes out at .330 after optimization, showing that this 

dataset is similar but not the same as the old dataset.  Garcia 2008, operating on the 

verification data, is still better than either of its unoptimized competitors PPS and PPM 

predicting on the old dataset, and functions fairly well even in this new region.  Each 

result is listed in Table 17: 
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Table 17. Verification Heidke Skill Scores for all Algorithms 

Algorithm Unoptimized HSS Optimized HSS Verification HSS 

Garcia 1994 .342 .371 .229 

Garcia 2008 .387 .526 .330 

PPS .036 .388 .443 

PPM .093 .405 .222 

Garcia 2008 and the Verification Dataset Problem 

Garcia 2008 performs worse in the Verification Dataset than it did on the master 

dataset from 1986-2004.  Table 18 is a truth table showing the bad forecasts, then Figure 

22 is a graph of the data: 

Table 18. Garcia 2008 Truth Table for Verification Database 

Truth Table   

Event Forecast Observed  

 Yes No  

Yes 
3 11 

FA 

No 
0 124 

 

 MF   
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Figure 22. Prediction Results from Applying Garcia 2008 to Verification Dataset 

 

There are several reasons for Garcia 2008‘s lack of skill in the verification 

dataset.  First, the flares in the verification data are mostly small M class flares.  Garcia 

2008 does work with these, but this is not its best region.  Garcia 2008 does best with 

cool X class flares, and though the SEP events in the verification data are associated with 

hot flares, there are several cool flares without SEP, as seen in Figure 23. 
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Figure 23. Verification Database Flares and SEP Events 

Secondly, Garcia 2008 successfully predicts all three SEP events in the 

verification data.  The drop in HSS comes solely from 11 false alarms.   There is only a 

slight preference of west over east pattern to the false alarm flares in longitude, as shown 

in Figure 24: 
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Figure 24. Garcia 2008 on the Verification Dataset, False Alarms 

 

 

These false alarms also come from the radio data.  In all but one case of the 11 

false alarms, the flare had both Type II and Type IV data associated with it.  This 

overwhelming preference is shown in Figure 25: 
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Figure 25. Garcia 2008 False Alarms in the Verification Dataset, by Radio Data 

 

 

Six of these 11 flares came from western longitudes, and one was unknown.  The 

flares were also cooler than normal for their peak x-ray flux.  The false alarms were also 

mostly X flares.  Overall, these are exactly the kind of flares that Garcia 2008 learned to 

predict as associated with SEP events in the original database.  As shown, there is no 

association of predictors that will perfectly separate these flares.  Without additional 

predictors, these flares will not be classified correctly. 

Several Flares: A Scientific Comparison 

As the false alarms in the verification database appear so similar to flares with 

SEP, further analysis is needed on the difference between flares associated with SEP and 

those without.  A comparison of similar flares yields interesting light on the physics 
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inherent in this analysis.  It also explains the difficulty in telling flares that are associated 

with SEP events from other flares.  There is no simple dividing line, as this data shows.  

Flare A, with a SEP event, from 20 Feb 2002, has similar properties to flares B (27 Oct 

2003), C (19 Sep 2000), and D (29 July 99); each not accompanied by a SEP event.  Here  

Table 19 is a list of the easily comparable data from each flare, from the Balch 

Database (x-ray class, location on the solar disk, Type II and IV radio events, duration of 

these events if applicable, presence or absence of a Coronal Mass Ejection (CME), 

integrated flux, temperature in MK, emission measure, truth of SEP events, and the 

prediction each of the algorithms upon receiving this data): 

Table 19. A Comparison of 4 Similar Flares Showing Differences and Similarities Between Flares 

with SEP Events and Flares without SEP Events 

Title Flare A Flare B Flare C Flare D 

Date 20 Feb 2002 27 Oct 2003 19 Sep 2000 29 Jul 1999 

X-ray Scale M5.1 M5.0 M5.1 M5.1 

Location N12W72 S16E26 N14W46 N25E51 

Type II? Yes No Yes No 

TII Duration 15 NULL 1 NULL 

Type IV? Yes No Yes No 

TIV duration 16 NULL 28 NULL 

CME? Yes No Yes Yes 

CME speed 952 NULL 766 199 

Integrated Flux 2.26E-02 2.70E-02 7.09E-02 1.57E-02 

Mewe Temp. 17 17.2 16.9 16.6 

SEP? Yes No No No 

PPM Predicts No No Yes No 

PPS Predicts Yes Yes Yes Yes 

Garcia Predicts No No No No 

 

 

As is apparent from this data, these flares share many similarities.  They have 

similar x-ray maximum flux (x-ray scale), they have a similar temperature, and their 

emission measures (measure of electron density per area) are exactly the same.  Their 

integrated flux values are very close for three of the four flares.  The biggest difference is 



 68 

 

 

 

the western longitude of Flare A.  As noted earlier, longitude is a good predictor of SEP 

event.  However, the probability of SEP event seems nearly constant in the west, so Flare 

C is similar to Flare A in this respect and difficult to differentiate.  The next difference is 

the lack of the Coronal Mass Ejection (CME) for flare B, also without the radio traces 

that it produces.  CMEs are strongly correlated with SEP events (Kahler and Vourlidas, 

2005; Kahler et. al., 1984; Kahler, 1996), and the radio signatures are a function of the 

mass that was ejected pushing its way through the thin gas in the interplanetary medium.  

They are not required for a SEP event, nor are they sufficient, as flares C and D suggest.  

The high speed of the CME in flare A as compared to flare D is noteworthy, even given 

the extreme look angle of flare A.  Flare A comes from 72 degrees west of solar center, 

so only a fraction of the true speed may be shown.  CMEs do not necessarily originate at 

the some location as flares, so the exact number is unknown.  This higher CME speed 

may indicate favorable conditions for the SEP event.   

Both flares A and C have a Type II and Type IV radio signature.  Eastern latitudes 

are correlated with a lesser chance of observed SEP events of certain magnitudes, due to 

magnetic field lines that direct particles away from our sensors (Garcia, 1994a). 

Here, flare C is the closest in appearance to flare A, which has the only SEP event 

of the four.  Indeed, predictions by both PPS and PPM anticipate this will have a SEP 

event, incorrectly.  Clearly, neither algorithm has sufficient information to make a good 

forecast about this flare.  Garcia 1994 gets this one right, though it fails to correctly 

predict the actual SEP event.   

This series of comparisons serves to highlight the difficulties in forecasting SEP 

events.  The majority of flares are below X1 and it is extremely difficult to separate flares 
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with SEP from those without in that region.  None of the three models in operational use 

can separate these 4 flares correctly.   
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V. Conclusions 

Changes to State of the Art 

There are several conclusions which can be reached from this research.  The first 

is that the current operational algorithms, PPS and PPM, can both be improved 

dramatically by simple changes to threshold values.   

Threshold Value Changes 

Both PPS and PPM have operational thresholds assigned to them by the nature of 

their prediction.  PPM predicts as a percentage chance of SEP events and at the 50% 

mark has a Heidke Skill Score (HSS) of only .093.  Optimizing PPM with a threshold 

value of .3 leads to a HSS of .405, 96% correct total predictions and 42% correct 

prediction of SEP events.  PPS shows the most dramatic change from original to 

optimized version.  At the default level of 10 particle flux units (pfu), PPS has a HSS of 

only .039.  It has only one missed forecasts at a cost of thousands of false alarms.  

Raising the threshold for a prediction to 720 pfu causes the HSS to rise to .388.  This is a 

significant change.  The original Garcia 1994 model shows similar improvements as 

optimization is applied.  From as HSS of .342, it rises to a HSS of .370 when the 

threshold is raised from .50 to .58.  Finally, the Garcia 2008 model has the best overall 

results at a HSS of .526, well above any other predictive algorithm.   

The improvement of all these models under optimization is an important 

conclusion from this paper.  No model is perfect as it is, and simple changes can 

drastically improve the ability of the algorithms to predict SEP events.  All algorithms 

can be optimized with respect to the HSS by using the thresholds listed in Table 16, and 

thus obtain better results. 
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New Garcia Model versus Old Garcia Model 

The method that generated the old Garcia model, Garcia 1994, was sound: use a 

Generalized Linear Model to calculate the dependence of the probability of a SEP event 

on the logarithm of the flux and temperature of the flare.  However, since the database 

used to generate this model was outdated and incomplete (Garcia, 1994a), there is every 

reason to want a new model updated with new coefficients.  I performed this analysis and 

then found a new model with more terms that was substantially more accurate.  Both 

models predicted the high x-ray flux region equally well, and had similar troubles in the 

low x-ray regions. 

The Success of the Garcia 2008 

The second major conclusion from this research is that Garcia 2008 is the most 

successful predictive algorithm tested for the training data.  It also predicts in the 

verification dataset.  It uses a linear combination of coefficients for the log of the x-ray 

peak flux, the temperature, the integrated flux, radio data for Type II and Type IV radio 

events, and flare longitude for prediction.  These factors give it an unprecedented .526 

Heidke Skill Score, .12 greater than the next best algorithm.  For usage of Garcia 2008, 

see Appendix B.  For a full text version of the generating algorithm that can be used to 

add predictors or use new data, see Appendix C. 

Recommendations for Further Research 

There is room for improvement on several facets of this analysis.  The association 

of SEP with predictors more difficult to measure, such as gradual hardening of x-rays, the 

interplanetary magnetic field, as represented by the geomagnetic index, and solar wind 

speed are all important, particularly to a physics based model.  These parameters are 



 72 

 

 

 

difficult to measure but may increase our ability to predict SEP events drastically.  

Second, the association of SEP with CMEs is important, but this study focused on flares.  

This study should be repeated using robust measures of CMEs, such as mass, speed, and 

location, in addition to the radio data currently used, and these predictors should be 

compared to observed SEP events.  There is room for improvement with the statistical 

approach as well.  In this approach, only basic logistic regression was used.  A modern 

statistical look at SEP, for example with a neural net or support vector machines, may be 

able to improve results.  Finally, a new type of statistical model that can take into account 

uncertain data such as flares with no location or unknown radio data should be able to 

better predict this subset of flares more efficiently.   

These recommendations for further study are not easy, but they should be done 

for the safety of operators in space.  There are enough solar flares in even a calm time 

like 2006-2007 (138 flares at M1 or greater, 3 proton events) to be a danger to anyone in 

space. 
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Appendix A. Fréchet Distance 

There are several ways to determine how far apart two curves are. The first here 

illustrated is the Hausdorff Distance, defined here as (Pelletier, 2002; Dumitrescu and 

Rote, 2004): 

}))),{((}),,{(((),( badMinMaxbadMinMaxMaxBA
AaBbBbAa

H
    (8) 

The Hausdorff distance thus finds the closest distance (here we use the Euclidean 

distance metric) between two points. Pick a point a that exists on curve A, and find the 

minimum distance to any point b on curve B. Pick the maximum value over all choices of 

a, then repeat the process starting from curve B. This procedure has obvious weaknesses, 

in that it does not take the course of the curve into consideration, merely the location of 

points. 

The second way to measure distances between curves is the Fréchet Distance. 

This process can be illustrated by the example: suppose a man is walking a dog, and both 

man and dog are constrained to walk along curves, but may travel at their own speeds. 

They may not move backward. The Fréchet Distance is the minimum length of the leash 

the man must use (Pelletier, 2002).  Mathematically, this appears as: 
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In words, this equation represents the phrase, ―For every possible function α(t) 

and β(t), find the largest distance between the man and his dog as they walk along their 

respective path; finally, keep the smallest distance found among these maximum 

distances,‖ (Pelletier, 2002). 



 74 

 

 

 

For the application here, determining whether or not two probability curves are 

similar, the Fréchet Distance and Hausdorff Distance are the same.  Fortunately, the 

choice of α(t) and β(t) are obvious as the two curves possess no inflection point, there 

will be no better match then the point of closest approach at each point.  This can be 

found by finding the intersection of the perpendicular to the derivative of the slope with 

the second curve.  Alternatively, for small data sets, it can be simpler to compare each 

and every point and simply take the minimum.  Each point has a closest neighbor in the 

opposite set, and the maximum of these local minimums is the Fréchet Distance for the 

two curves. 
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Appendix B. Use of Garcia 2008  

Garcia 2008 is easy to use as a prediction algorithm.  Use this command in 

MATLAB, associated with variables as follows (logxray = base 10 log of the peak x-ray 

flux in W/m
2
; temp = Mewe temp as seen in Chapter 2; long = longitude of the flare if 

known, positive west, zero if unknown; type2 = 1 if a type II radio event occurred, 0 

otherwise; type4 =1 if a type IV radio event occurred; intflux = the integrated flux 

between flare beginning and end): 

b=[-54.5973;-19.9285;-2.0495;2.5251;-0.0304;0.4375;0.0126;0.3577;1.0397;2.7282;-0.3725;]; 
 

fit=glmval(b,(logxray,logxray.^2,temp,temp.^2,logxray.*temp,long,type2,type4, intflux,intflux.^2),'logit'); 
 

The result stored in the variable ‗fit‘ is the prediction for a SEP event.   Apply the 

threshold .18 and mark as no-SEP any flare with a probability less than that number, and 

mark as a SEP event any flare with greater probability. 

To perform this operation without MATLAB, use the coefficients listed times the 

appropriate predictor. This number, η, is transformed via the logistic equation into the 

probability.  Use equation 4 with η for the probability. 
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Appendix C. Text of Garcia 2008 

Following is a text of the MATLAB code that produced Garcia 2008.  If a 

spreadsheet 'C:\Documents and Settings\addyourdatahere.xls', with columns in the order: 

flare onset, flare max time, flare end time, flare peak flux in W/m
2
, blank, blank, blank, 

longitude, blank, blank, type II binary, type 2 duration, type 4 binary, type 4 duration, 

cme binary, blank, cme speed, blank, blank, integrated flux, blank, blank, temp (mewe),  

9 blank columns, SEP truth binary, 9 blank columns, then lat and long (south and east 

negative). Output will be in the variable b (coeffiecients for GLM) and fit (prediction for 

each flare).  A new flare can be predicted with variables loaded as shown and the 

command: 

b=[-54.5973;-19.9285;-2.0495;2.5251;-0.0304;0.4375;0.0126;0.3577;1.0397;2.7282;-0.3725;]; 
 

fit=glmval(b,(logxray,logxray.^2,temp,temp.^2,logxray.*temp,long,type2,type4, intflux,intflux.^2),'logit'); 
 

Following is the full text of the algorithm to fit new parameters or new 

coefficients into the model, from a spreadsheet as described in Appendix B: 

Garcia 2008 

clear all 
close all 
%load data 
(text, numeric,raw)=xlsread('C:\Documents and Settings\addyourdatahere.xls'); 
xray=(); 
temp=(); 
sep=(); 
rpatrol=(); 
type2=(); 
type4=(); 
cme=(); 
cmespeed=(); 
intflux=(); 
emmewe=(); 
tmewe=(); 
eMFhianti=(); 
type2dur=(); 
type4dur=(); 
lat=(); 
long=(); 
west=(); 
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%load raw into columns with titles 
sepraw=raw(1:end,34); 
xrayraw=raw(1:end,4); 
tempraw=raw(1:end,25); %chianti 
rpatrolraw=raw(1:end,10); 
type2raw=raw(1:end,11); 
type4raw=raw(1:end,13); 
cmeraw=raw(1:end,15); 
cmespeedraw=raw(1:end,17); 
intfluxraw=raw(1:end,20); 
tmeweraw=raw(1:end,23); 
emmeweraw=raw(1:end,24); 
eMFhiantiraw=raw(1:end,26); 
%intflux=raw(101:end,20); 
type2durraw=raw(1:end,12); 
type4durraw=raw(1:end,14); 
latraw=raw(1:end,44); 
longraw=raw(1:end,45); 
westraw=raw(:,47); 
for q=2:length(xrayraw) 
%turn cells into doubles 
        xray=(xray;xrayraw{q}); 
        temp=(temp ; tempraw{q}); 
        sep=(sep;sepraw{q}); 
rpatrol=(rpatrol;rpatrolraw{q}); 
type2=(type2;type2raw{q}); 
type4=(type4;type4raw{q}); 
cme=(cme;cmeraw{q}); 
cmespeed=(cmespeed;cmespeedraw{q}); 
intflux=(intflux;intfluxraw{q}); 
emmewe=(emmewe;emmeweraw{q}); 
tmewe=(tmewe;tmeweraw{q}); 
   eMFhianti=(eMFhianti; eMFhiantiraw{q}); 
type2dur=(type2dur;type2durraw{q}); 
type4dur=(type4dur;type4durraw{q}); 
lat=(lat;latraw{q}); 
long=(long;longraw{q}); 
west=(west;westraw{q}); 
end 
  

  

  
b=(); 
% observation=(); 
% sep=(); 
% control=(); 
newrow=(); 
 numberofboxestemp=50; 
 numberofboxesxray=200; 
 xraysep=(); 
 xrayctl=(); 
 tempsep=(); 
 tempctl=(); 
 %setup for graphing  
 for q=1:length(xray) 
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if sep(q)==1 
     xraysep=(xray(q),xraysep); 
     tempsep=(temp(q),tempsep); 
else 
    xrayctl=(xray(q),xrayctl); 
    tempctl=(temp(q),tempctl); 
end 
 end 
 (boxesnorm,centers)=hist3((xrayctl',tempctl'),(numberofboxesxray,numberofboxestemp)); 
 boxessep=hist3((xraysep',tempsep'),centers); 
 minxray=min(xray); 
 maxxray=max(xray); 
 stepxray=(max(xray)-min(xray))/(numberofboxesxray); 
 xcent1=(minxray:stepxray:maxxray); 
 mintemp=min(temp); 
 maxtemp=max(temp); 
 steptemp=(max(temp)-min(temp))/(numberofboxestemp); 
 xcent2=(mintemp:steptemp:maxtemp); 
  
dev=(); 
b=(); 
stats=(); 
fit=(); 
dlo=(); 
dhi=(); 
  
%model 
logxray=log10(xray) 
%this step does all the work 
b=glmfit((logxray,logxray.^2,temp,temp.^2,logxray.*temp,long,type2,type4,intflux,intflux.^2),sep,'binomia

l'); 
%this step makes a prediction for each flare, stores the prediction in 
%'fit' 
fit=glmval(b,(logxray,logxray.^2,temp,temp.^2,logxray.*temp,long,type2,type4, intflux,intflux.^2),'logit'); 
  

  
%plot everything to see how it did 
%triangles are probabilities, + overlaid are the events 
scatter(xray,temp,10*(fit),'r^', 'filled'); 
hold on 
scatter(xraysep,tempsep,10, 'b+'); 
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